

# **Towards Automated Deep Learning**

#### **Frank Hutter**

University of Freiburg & Bosch Center for AI fh@cs.uni-freiburg.de











### Motivation: Successes of Deep Learning

#### Computer vision in self-driving cars



UNI FREIBURG







Reasoning in games

### End-to-end learning

UNI FREIBURG

#### **Deep learning** learns features from raw data

- Multiple layers of abstractions
- End-to-end learning: joint optimization of a single loss function



#### Visualizations of network activations taken from Zeiler [2014]

### **One Problem of Deep Learning**

- UNI FREIBURG Performance is very sensitive to many hyperparameters
  - Architectural hyperparameters



- Optimization algorithm, learning rates, momentum, batch normalization, batch sizes, dropout rates, weight decay, data augmentation, ...

#### $\rightarrow$ Easily 20-50 design decisions



#### **AutoML: true end-to-end learning**



#### End-to-end learning

#### UNI FREIBURG **Deep Learning and AutoML Current deep learning practice** Expert chooses Deep architecture & learning "end-to-end" hyperparameters

#### **AutoML: true end-to-end learning**



### Deep Reinforcement Learning and AutoML

#### **Current deep RL practice**



UNI FREIBURG

> Expert chooses state representation,

RL algo, architecture,

hyperparameters



Deep RL "end-to-end"

#### AutoML: true end-to-end learning





Part 1: AutoML as Blackbox Optimization

- Part 2: Speeding up AutoML
- Part 3: "Auto-RL" for Learning to Design RNA



### Benchmark for Progress: AutoML Challenge

- Large-scale challenge run by ChaLearn & CodaLab
  - 17 months, 5 phases with 5 new datasets each (2015-2016)
  - 2 tracks: code submissions / Kaggle-like human track
- Code submissions: true end-to-end learning necessary
  - Get training data, learn model, make predictions for test data
  - 1 hour end-to-end

- 25 datasets from wide range of application areas
  - Already featurized
  - Inputs: features X, targets y

### AutoML as Blackbox Optimization





- Parameterize ML framework: WEKA [Witten et al, 1999-current]

- 27 base classifiers (with up to 10 hyperparameters each)
- 2 ensemble methods; in total: 786 hyperparameters
- Optimize CV performance by Bayesian optimization (SMAC)
  - Only evaluate more folds for good configurations
    - 5x speedups for 10-fold CV

 $\blacksquare := \sum_{i=1}^k \bullet_i$ 

#### Available in WEKA package manager; ≈400 downloads/week



# Auto-sklearn: Ready for Prime Time

- Winning approach in the AutoML challenge
  - Auto-track: overall winner, 1<sup>st</sup> place in 3 phases, 2<sup>nd</sup> in 1
- Fork me on CitHus Human track: always in top-3 vs. 150 teams of human expension
  - Final two rounds: won both tracks

UNI FREIBURG

### https://github.com/automl/auto-sklearn

| 🗊 Used by 🕶 | 54 | O Watch ▼ | 213 | ★ Star | 4k | <b>%</b> Fork | 764 |
|-------------|----|-----------|-----|--------|----|---------------|-----|
|-------------|----|-----------|-----|--------|----|---------------|-----|

• Trivial to use, open source (BSD):

**import** autosklearn.classification **as** cls automl = cls.AutoSklearnClassifier() automl.fit(X train, y train) y hat = automl.predict(X test)

# Example Application: Robotic Object Handling

- Collaboration with Freiburg's robotics group
- Binary classification task for object placement: will the object fall over?



Dataset

Video credit: Andreas Eitel

- Based on BigBIRD and YCB Object and Model Set
- 30000 data points
- 50 features -- manually defined [BSc thesis, Hauff 2015]
- Performance
  - Strong BSc student, 3 months with Caffe: 2% error rate
  - Auto-sklearn: 0.6% error rate (within 30 minutes)



https://github.com/automl/Auto-PyTorch

- Joint Architecture & Hyperparameter Optimization
- Auto-Net won several datasets against human experts
  - E.g., Alexis data set:

- 54491 data points,
  5000 features, 18 classes
- First automated deep learning system to win a ML competition data set against human experts



# Since Then: Many Works on Architecture Search

- RL & Evolution for NAS by Google Brain [Quoc Le's group, '16-'18]
  - New state-of-the-art results for CIFAR-10, ImageNet, Penn Treebank, Cityscapes
  - Large computational demands
    - 800 GPUs for 2 weeks

UNI FREIBURG

- 12.800 architectures evaluated
- Hyperparameter optimization only as postprocessing

#### Recent work aims for efficiency

- Network morphisms [Chen et al, '16; Cai et al, '17&'18; Elsken et al, '17&18]
- Weight sharing [Pham et al,'18; Bender et al, '18; Liu et al, '19]
- Multi-fidelity optimization [Klein et al, '16; Li et al, '18; Falkner et al, '18]



• Part 1: AutoML as Blackbox Optimization

#### Part 2: Speeding up AutoML

- Fast Neural Architecture Search via Network Morphisms
- Fast Neural Architecture Search via Weight Sharing: DARTS
- Fast Hyperparameter Optimization via Multi-fidelity Methods
- Part 3: "Auto-RL" for Learning to Design RNA

### Fast Architecture Search via Network Morphisms

UNI FREIBURG

[Elsken, Metzen & Hutter, MetaLearn 2017]



#### Result: enables architecture search in 12 hours on 1 GPU

### Efficient Multi-objective Architecture Search

[Elsken, Metzen & Hutter, ICLR 2019]

• To trade off network size vs. error, maintain a **Pareto front** of the **2 objectives** 





- Evolve a population of Pareto-optimal architectures over time
- **LEMONADE:** Lamarckian Evolution for Multi-Objective Neural Architecture DEsign
  - Weight inheritance through approximate morphisms
  - Still cheap: 1 week on 8 GPUs

# Efficient Multi-objective Architecture Search

[Elsken, Metzen & Hutter, ICLR 2019]

#### • Comparison to existing mobile-sized networks

Using the same training pipeline

- Better than manually-constructed mobile architectures
- Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)



# UNI FREIBURG **Efficient Multi-objective Architecture Search**

[Elsken, Metzen & Hutter, ICLR 2019]

#### **Comparison to existing mobile-sized networks**

- Using the same training pipeline
- Better than manually-constructed mobile architectures
- Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)



### Weight Sharing: DARTS

UNI FREIBURG



- Relax the discrete NAS problem (a->b)
  - One-shot model with continuous architecture weight  $\alpha$  for each operator

- Combined operator: 
$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

• Solve a bi-level optimization problem (c)

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
  
s.t.  $w^*(\alpha) = \operatorname{argmin}_w \quad \mathcal{L}_{train}(w, \alpha)$ 

• In the end, discretize to obtain a single architecture (d)



### Speeding up Hyperparameter Optimization

UNI FREIBURG



### → Multi-fidelity methods

In a nutshell: use cheaper-to-evaluate approximations of the blackbox, performance on which correlates with the real blackbox

### Using Cheap Approximations of the Blackbox

#### • One possible approximation: use a subset of the data

- E.g.: SVM on MNIST

- Many cheap evaluations on small subsets
- Few expensive evaluations on the full data
- Up to 1000x speedups [Klein et al, AISTATS 2017]



### Using Cheap Approximations of the Blackbox

#### • One possible approximation: use less epochs of SGD

- [Swersky et al, arXiv 2014; Domhan et al, IJCAI 2015]



# Using Cheap Approximations of the Blackbox

- Cheap approximations exist in many applications
  - Subset of data

- Fewer epochs of iterative training algorithms (e.g., SGD)
- Downsampled images in object recognition
- Shorter MCMC chains in Bayesian deep learning
- Fewer trials in deep reinforcement learning
- Also applicable in different domains, e.g., **fluid simulations**:
  - Less particles
  - Shorter simulations

### How to Exploit Cheap Approximations

- UNI FREIBURG Bayesian optimization [Klein et al, 2017; Kandasamy et al, 2017]
  - Fit a predictive model  $f(\lambda, b)$  to predict performance as a function of hyperparameters  $\lambda$  and budget b
  - Extrapolate performance from small to large budgets
  - Simpler approach:
    - Successive Halving [Jamieson & Talwalkar, AISTATS 2015]
    - Hyperband [Li et al, ICLR 2017]



# **BOHB: Bayesian Optimization & Hyperband**

#### [Falkner, Klein & Hutter, ICML 2018]

#### Bayesian optimization

- for choosing the configuration to evaluate
- Hyperband

UNI FREIBURG

for deciding how to allocate budgets

#### Advantages

- All the advantages of Hyperband
  - Strong anytime performance
  - General-purpose
    - Low-dimensional continuous spaces
    - High-dimensional spaces with conditionality, categorical dimensions, etc
  - Easy to implement
  - Scalable
  - Easily parallelizable
- But also strong final performance (due to Bayesian optimization)



### Hyperband vs. Random Search

UNI FREIBURG



Biggest advantage: much improved anytime performance

Auto-Net on dataset adult

### Bayesian Optimization vs. Random Search

UNI FREIBURG



Biggest advantage: much improved final performance

Auto-Net on dataset adult

### **Combining Bayesian Optimization & Hyperband**

UNI FREIBURG



Best of both worlds: strong anytime and final performance

Auto-Net on dataset adult

### Almost Linear Speedups By Parallelization

UNI FREIBURG



Auto-Net on dataset letter

### **Application to Bayesian Deep Learning**

- UNI FREIBURG **Stochastic Gradient Hamiltonian Monte Carlo** 
  - Budget: MCMC steps  $\bullet$



### Application to Deep Reinforcement Learning

- UNI FREIBURG **Proximal policy optimization** on cartpole benchmark
  - Budget: trials (to find a robust policy)



# Application to Second AutoML Challenge

[Feurer, Eggensperger, Falkner, Lindauer, Hutter; AutoML 2018]

#### • Auto-sklearn 2.0

- Uses base algorithms from scikit-learn and XGBoost
- Optimized using BOHB
- Budgets: dataset size; number of training epochs
- More efficient for large datasets than Auto-sklearn 1.0
- Use meta-learning across datasets to warmstart BOHB
  - 16 complementary configurations for the first phase of successive halving pre-selected with SMAC
- Won the second international AutoML challenge (2017 – 2018)



- Part 1: AutoML as Blackbox Optimization
- Part 2: Speeding up AutoML

Part 3: "Auto-RL" for Learning to Design RNA

### The RNA Design Problem

UNI FREIBURG Background on RNA:

[Stoll, Runge, Falkner & Hutter, ICLR 2019]

- Sequence of nucleotides (C, G, A, U)
- Folds into a secondary structure, which determines its function
- **RNA design**: find an RNA sequence that folds to a given structure



- RNA folding is  $O(N^3)$  for sequences of length N
- RNA design is computationally hard
  - Typical approach: generate and test; local search
  - Here: learning a policy network to sequentially design the sequence

### **RNA Design as an RL Problem**

#### • Actions:

UNI FREIBURG

> Place next nucleotide/ pair of nucleotides



• **State** at time t:

– Simply a local n-gram centered at step t:

• (Episodic) reward:

Fold the designed sequence, measure agreement with target

 Policy network: maps the state to a probability distribution over actions

### **RL and Meta-Learning for RNA Design**

#### • LEARNA

UNI FREIBURG

- Offline phase: -
- Online phase:
  - Run PPO on the target structure
  - Run on 1 core, for 10 min (Rfam) or 1 day (Eterna); enough for about 100-10.000 episodes (depending on sequence length and policy network)

#### Meta-LEARNA

- Offline phase:
  - Optimize the policy network *P* with PPO, to maximize reward across a training set of RNA structures, for 1 hour on 20 parallel workers
  - This budget is less than the 24-hour budget for a single Eterna structure!
- Online phase: iteratively sample from  $\mathcal{P}$  on the target structure

#### Meta-LEARNA-adapt

- Offline phase: same as Meta-LEARNA
- Online phase: continue running PPO on the target structure

### AutoML for LEARNA and Meta-LEARNA ("Auto-RL")

• We optimize the policy network's neural architecture



Sampled action Fully connected Optional RNN (up to 2 layers)

Optional CNN (up to 2 layers)

Optional embedding

State representation: n-grams

- At the same time, we jointly optimize further hyperparameters:
  - Length of n-grams (parameter of the decision process formulation)
  - Learning rate
  - Batch size

UNI FREIBURG

Strength of entropy regularization

# Details for Optimization with BOHB

- Created a new set of RNA target structures for training
  - 65.000 structures for training, 100 for validation, 100 for test
- Meta-optimizing LEARNA

- No offline learning phase, so directly optimized on the validation set
- Full function evaluations on the Rfam dataset cost 10 minutes = 600s
- Multi-fidelity budgets: 22s, 66s, 200s, 600s
- Overall optimization budget: about 1 day on 180 CPU cores
- Meta-optimizing Meta-LEARNA
  - Maximum runtimes we used: 1h (on 20 workers)
  - Multi-fidelity budgets: 400s, 1200s, 3600s
  - Overall optimization budget: about 1 day on 1,000 CPU cores



#### Results: Eterna100



# FREIBURG

### Results: Rfam-Taneda

Solved Sequences [%]





- Part 1: AutoML as Blackbox Optimization
- Part 2: Speeding up AutoML
- Part 3: "Auto-RL" for Learning to Design RNA



#### Conclusion

UNI FREIBURG

• AutoML: true end-to-end learning



• Large speedups by going beyond blackbox optimization

- Speedups in NAS and hyperparameter optimization
- BOHB: combination of Bayesian optimization and Hyperband
- AutoML is directly applicable to RL and Meta-Learning
- Application to "Auto-RL" for learning to design RNA etc)
- Links to code: <u>http://automl.org</u>
- Book on AutoML: <u>http://automl.org/book</u>



OPEN

### Thank you for your attention!

#### **Funding sources**





UNI FREIBURG

> European Research Council



GEFÖRDERT VOM

獭

Bundesministerium für Bildung und Forschung DFG Priority Programme 1527







#### My fantastic team



I'm looking for additional great postdocs!



