
Towards Automated Deep Learning

Frank Hutter
University of Freiburg & Bosch Center for AI

fh@cs.uni-freiburg.de

@FrankRHutter
@AutoMLFreiburg

2

Motivation: Successes of Deep Learning

Speech recognition

Computer vision in self-driving cars

Reasoning in games

Deep learning learns features from raw data

– Multiple layers of abstractions

– End-to-end learning: joint optimization of a single loss function

3

End-to-end learning

Visualizations of network activations taken from Zeiler [2014]

Performance is very sensitive to many hyperparameters

– Architectural hyperparameters

– Optimization algorithm, learning rates, momentum,
batch normalization, batch sizes, dropout rates, weight decay,
data augmentation, …

→ Easily 20-50 design decisions
4

One Problem of Deep Learning

…

dog
cat

convolutional layers # fully connected layers

Units per layer

Kernel size

5

Deep Learning and AutoML

Current deep learning practice

Expert chooses
architecture &

hyperparameters

Deep
learning

“end-to-end”

AutoML: true end-to-end learning

End-to-end learning

6

Deep Learning and AutoML

Current deep learning practice

Expert chooses
architecture &

hyperparameters

Deep
learning

“end-to-end”

AutoML: true end-to-end learning

End-to-end learning

Meta-level
learning &

optimization

Learning
box

7

Deep Reinforcement Learning and AutoML

Current deep RL practice

Expert chooses
state representation,
RL algo, architecture,

hyperparameters

Deep RL
“end-to-end”

AutoML: true end-to-end learning

End-to-end learning

Meta-level
learning &

optimization

Learning
box

8

Overview

End-to-end learning

Meta-level
learning &

optimization

Learning
box

• Part 1: AutoML as Blackbox Optimization

• Part 2: Speeding up AutoML

• Part 3: “Auto-RL” for Learning to Design RNA

AutoML: true end-to-end learning

• Large-scale challenge run by ChaLearn & CodaLab

– 17 months, 5 phases with 5 new datasets each (2015-2016)

– 2 tracks: code submissions / Kaggle-like human track

• Code submissions: true end-to-end learning necessary

– Get training data, learn model, make predictions for test data

– 1 hour end-to-end

• 25 datasets from wide range of application areas

– Already featurized

– Inputs: features X, targets y

9

Benchmark for Progress: AutoML Challenge

End-to-end learning

Meta-level
learning &

optimization

Learning
box

10

AutoML as Blackbox Optimization



f()

Blackbox
optimization

Random search,
evolutionary methods,
reinforcement learning,

…
Bayesian optimization



f()

– Parameterize ML framework: WEKA [Witten et al, 1999-current]

• 27 base classifiers (with up to 10 hyperparameters each)

• 2 ensemble methods; in total: 786 hyperparameters

– Optimize CV performance by Bayesian optimization (SMAC)
• Only evaluate more folds for good configurations

– 5x speedups for 10-fold CV

11

AutoML System 1: Auto-WEKA

Meta-level
learning &

optimization
WEKA

[Thornton, Hutter, Hoos, Leyton-Brown, KDD 2013; Kotthoff et al, JMLR 2016]

Available in WEKA package manager; 400 downloads/week

• Optimize CV performance by SMAC

• Meta-learning to warmstart Bayesian optimization
– Reasoning over different datasets

– Dramatically speeds up the search (2 days → 1 hour)

• Automated posthoc ensemble construction
to combine the models Bayesian optimization evaluated
– Efficiently re-uses its data; improves robustness

12

AutoML System 2: Auto-sklearn

Meta-level
learning &

optimization

Scikit-
learn

[Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter; NIPS 2015]

• Winning approach in the AutoML challenge

– Auto-track: overall winner, 1st place in 3 phases, 2nd in 1

– Human track: always in top-3 vs. 150 teams of human experts

– Final two rounds: won both tracks

• Trivial to use, open source (BSD):

13

Auto-sklearn: Ready for Prime Time

https://github.com/automl/auto-sklearn

• Collaboration with
Freiburg’s robotics group

• Binary classification task
for object placement:
will the object fall over?

• Dataset
– Based on BigBIRD and YCB Object and Model Set

– 30000 data points

– 50 features -- manually defined [BSc thesis, Hauff 2015]

• Performance
– Strong BSc student, 3 months with Caffe: 2% error rate

– Auto-sklearn: 0.6% error rate (within 30 minutes)

14

Example Application: Robotic Object Handling

Video credit: Andreas Eitel

• Joint Architecture & Hyperparameter Optimization

• Auto-Net won several datasets against human experts
– E.g., Alexis data set:

• 54491 data points,
5000 features, 18 classes

– First automated deep learning
system to win a ML competition
data set against human experts

15

AutoML System 3: Auto-Net

Meta-level
learning &

optimization

Deep
neural net

[Mendoza, Klein, Feurer, Springenberg & Hutter, AutoML 2016]

https://github.com/automl/Auto-PyTorch

• RL & Evolution for NAS by Google Brain [Quoc Le’s group, ‘16-’18]

– New state-of-the-art results for
CIFAR-10, ImageNet, Penn Treebank, Cityscapes

– Large computational demands

• 800 GPUs for 2 weeks

• 12.800 architectures evaluated

– Hyperparameter optimization only as postprocessing

• Recent work aims for efficiency
– Network morphisms [Chen et al, ’16; Cai et al, ’17&‘18; Elsken et al, ’17&18]

– Weight sharing [Pham et al,’18; Bender et al, ’18; Liu et al, ‘19]

– Multi-fidelity optimization [Klein et al, ‘16; Li et al, ‘18; Falkner et al, ‘18]

16

Since Then: Many Works on Architecture Search

• Part 1: AutoML as Blackbox Optimization

• Part 2: Speeding up AutoML

– Fast Neural Architecture Search via Network Morphisms

– Fast Neural Architecture Search via Weight Sharing: DARTS

– Fast Hyperparameter Optimization via Multi-fidelity Methods

• Part 3: “Auto-RL” for Learning to Design RNA

17

Outline

18

Fast Architecture Search via Network Morphisms
[Elsken, Metzen & Hutter, MetaLearn 2017]

Result: enables architecture search in 12 hours on 1 GPU

Network morphisms
[Chen et al, 2015;

Wei et al, 2016;

Cai et al, 2017] Cosine annealing
[Loshchilov & Hutter, 2017]

• To trade off network size vs. error,
maintain a Pareto front of the 2 objectives

• Evolve a population of Pareto-optimal architectures over time

• LEMONADE: Lamarckian Evolution for Multi-Objective Neural Architecture DEsign

– Weight inheritance through approximate morphisms

– Still cheap: 1 week on 8 GPUs

Efficient Multi-objective Architecture Search
[Elsken, Metzen & Hutter, ICLR 2019]

19

• Comparison to existing mobile-sized networks
– Using the same training pipeline

– Better than manually-constructed mobile architectures

– Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)

20

Efficient Multi-objective Architecture Search
[Elsken, Metzen & Hutter, ICLR 2019]

CIFAR-10

• Comparison to existing mobile-sized networks
– Using the same training pipeline

– Better than manually-constructed mobile architectures

– Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)

21

Efficient Multi-objective Architecture Search
[Elsken, Metzen & Hutter, ICLR 2019]

Transfer to ImageNet 64x64

22

Weight Sharing: DARTS

• Relax the discrete NAS problem (a->b)
– One-shot model with continuous architecture weight α for each operator

– Combined operator:

• Solve a bi-level optimization problem (c)

• In the end, discretize to obtain a single architecture (d)

[Liu et al, ICLR 2019]

Learning
box

23

Speeding up Hyperparameter Optimization



f()

Hyperparameter
optimization

Too slow for big data

In a nutshell: use cheaper-to-evaluate approximations of the blackbox,
performance on which correlates with the real blackbox

Multi-fidelity methods→

• One possible approximation: use a subset of the data

– E.g.: SVM on MNIST

– Many cheap evaluations on small subsets

– Few expensive evaluations on the full data

– Up to 1000x speedups [Klein et al, AISTATS 2017]

24

Using Cheap Approximations of the Blackbox

log()

lo
g(

C
)

log() log() log()

lo
g(

C
)

lo
g(

C
)

lo
g(

C
)

 
 







 
































 

















• One possible approximation: use less epochs of SGD
– [Swersky et al, arXiv 2014; Domhan et al, IJCAI 2015]

25

Using Cheap Approximations of the Blackbox

All learning curves With predictive termination

• Cheap approximations exist in many applications

– Subset of data

– Fewer epochs of iterative training algorithms (e.g., SGD)

– Downsampled images in object recognition

– Shorter MCMC chains in Bayesian deep learning

– Fewer trials in deep reinforcement learning

– Also applicable in different domains, e.g., fluid simulations:
• Less particles

• Shorter simulations

26

Using Cheap Approximations of the Blackbox

• Bayesian optimization [Klein et al, 2017; Kandasamy et al, 2017]

– Fit a predictive model f(,b) to predict performance as a
function of hyperparameters  and budget b

– Extrapolate performance from small to large budgets

• Simpler approach:

– Successive Halving [Jamieson & Talwalkar, AISTATS 2015]

– Hyperband [Li et al, ICLR 2017]

27

How to Exploit Cheap Approximations
lo

g(
C

)

log() log() log() log()

lo
g(

C
)

lo
g(

C
)

lo
g(

C
)

log()

 
 







 
































 

















• Bayesian optimization
– for choosing the configuration to evaluate

• Hyperband
– for deciding how to allocate budgets

• Advantages
– All the advantages of Hyperband

• Strong anytime performance

• General-purpose
– Low-dimensional continuous spaces

– High-dimensional spaces with conditionality, categorical dimensions, etc

• Easy to implement

• Scalable

• Easily parallelizable

– But also strong final performance (due to Bayesian optimization)

28

BOHB: Bayesian Optimization & Hyperband
[Falkner, Klein & Hutter, ICML 2018]

29

Hyperband vs. Random Search

Biggest advantage: much improved anytime performance

20x speedup

3x speedup

Auto-Net on dataset adult

30

Bayesian Optimization vs. Random Search

Biggest advantage: much improved final performance

no speedup (1x)

10x speedup

Auto-Net on dataset adult

31

Combining Bayesian Optimization & Hyperband

Best of both worlds: strong anytime and final performance

20x speedup

50x speedup

Auto-Net on dataset adult

32

Almost Linear Speedups By Parallelization

7.5x speedup

Auto-Net on dataset letter

• Stochastic Gradient Hamiltonian Monte Carlo

• Budget: MCMC steps

33

Application to Bayesian Deep Learning

• Proximal policy optimization on cartpole benchmark

• Budget: trials (to find a robust policy)

34

Application to Deep Reinforcement Learning

• Auto-sklearn 2.0

– Uses base algorithms from scikit-learn and XGBoost

– Optimized using BOHB

– Budgets: dataset size; number of training epochs

– More efficient for large datasets than Auto-sklearn 1.0

• Use meta-learning across datasets to warmstart BOHB

– 16 complementary configurations for the first phase of
successive halving pre-selected with SMAC

• Won the second international AutoML challenge
(2017 –2018)

35

Application to Second AutoML Challenge
[Feurer, Eggensperger, Falkner, Lindauer, Hutter; AutoML 2018]

• Part 1: AutoML as Blackbox Optimization

• Part 2: Speeding up AutoML

• Part 3: “Auto-RL” for Learning to Design RNA

36

Outline

• Background on RNA:
– Sequence of nucleotides (C, G, A, U)

– Folds into a secondary structure, which determines its function

– RNA design: find an RNA sequence that folds to a given structure

• RNA folding is O(N3) for sequences of length N

• RNA design is computationally hard
– Typical approach: generate and test; local search

– Here: learning a policy network to
sequentially design the sequence

37

The RNA Design Problem

RNA folding

RNA design

[Stoll, Runge, Falkner & Hutter, ICLR 2019]

• Actions:
– Place next nucleotide/

pair of nucleotides

• State at time t:
– Simply a local n-gram centered at step t:

• (Episodic) reward:
– Fold the designed sequence, measure agreement with target

• Policy network: maps the state to a probability
distribution over actions

38

RNA Design as an RL Problem

• LEARNA
– Offline phase: -
– Online phase:

• Run PPO on the target structure
• Run on 1 core, for 10 min (Rfam) or 1 day (Eterna); enough for about

100-10.000 episodes (depending on sequence length and policy network)

• Meta-LEARNA
– Offline phase:

• Optimize the policy network P with PPO, to maximize reward across a
training set of RNA structures, for 1 hour on 20 parallel workers

• This budget is less than the 24-hour budget for a single Eterna structure!

– Online phase: iteratively sample from P on the target structure

• Meta-LEARNA-adapt
– Offline phase: same as Meta-LEARNA
– Online phase: continue running PPO on the target structure

39

RL and Meta-Learning for RNA Design

• We optimize the policy network‘s neural architecture

40

AutoML for LEARNA and Meta-LEARNA (“Auto-RL“)

Optional embedding

Optional CNN (up to 2 layers)

Optional RNN (up to 2 layers)

Fully connected

Sampled action

State representation: n-grams

• At the same time, we jointly optimize further hyperparameters:
– Length of n-grams (parameter of the decision process formulation)

– Learning rate

– Batch size

– Strength of entropy regularization

• Created a new set of RNA target structures for training
– 65.000 structures for training, 100 for validation, 100 for test

• Meta-optimizing LEARNA
– No offline learning phase, so directly optimized on the validation set

– Full function evaluations on the Rfam dataset cost 10 minutes = 600s

– Multi-fidelity budgets: 22s, 66s, 200s, 600s

– Overall optimization budget: about 1 day on 180 CPU cores

• Meta-optimizing Meta-LEARNA
– Maximum runtimes we used: 1h (on 20 workers)

– Multi-fidelity budgets: 400s, 1200s, 3600s

– Overall optimization budget: about 1 day on 1,000 CPU cores

41

Details for Optimization with BOHB

42

Results: Eterna100

RL-LS

Meta-LEARNA

Meta-LEARNA-adapt
LEARNA

MCTS-
RNA

AntaRNA

RNAInverse

TensorForce
startup overhead

450x speedup

43

Results: Rfam-Taneda

RL-LS

Meta-LEARNA Meta-LEARNA-adapt

LEARNA
MCTS-RNA

AntaRNA

RNAInverse

TensorForce
startup overhead

• Part 1: AutoML as Blackbox Optimization

• Part 2: Speeding up AutoML

• Part 3: “Auto-RL” for Learning to Design RNA

• Conclusion

44

Outline

• AutoML: true end-to-end learning

• Large speedups by going beyond blackbox optimization

– Speedups in NAS and hyperparameter optimization

– BOHB: combination of Bayesian optimization and Hyperband

– AutoML is directly applicable to RL and Meta-Learning

– Application to “Auto-RL” for learning to design RNA etc)

• Links to code: http://automl.org

• Book on AutoML: http://automl.org/book

Conclusion

http://ml4aad.org/
http://ml4aad.org/

46

Thank you for your attention!

My fantastic teamFunding sources

I‘m looking for
additional great postdocs!

@FrankRHutter
@automlfreiburg

