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Motivation: Successes of Deep Learning
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Computer vision in self-driving cars

Speech recognition

Reasoning in games
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End-to-end learning

Deep learning learns features from raw data

— Multiple layers of abstractions
— End-to-end learning: joint optimization of a single loss function
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Visualizations of network activations taken from Zeiler [2014]




One Problem of Deep Learning
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Performance is very sensitive to many hyperparameters
— Architectural hyperparameters

Peee Units per layer
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— Optimization algorithm, learning rates, momentum,
batch normalization, batch sizes, dropout rates, weight decay,
data augmentation, ...

— Easily 20-50 design decisions
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Deep Learning and AutoML

Current deep learning practice

Expert chooses Deep
—— =2 | architecture & | =2 learning
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AutoML: true end-to-end learning
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Deep Reinforcement Learning and AutoML

Current deep RL practice

g

v

Expert chooses
state representation,
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Deep RL
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Overview

m) Part 1: AutoML as Blackbox Optimization
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* Part 2: Speeding up AutoML
e Part 3: “Auto-RL” for Learning to Design RNA

AutoML: true end-to-end learning
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Benchmark for Progress: AutoML Challenge
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e Large-scale challenge run by ChalLearn & Codalab
— 17 months, 5 phases with 5 new datasets each (2015-2016)
— 2 tracks: code submissions / Kaggle-like human track

* Code submissions: true end-to-end learning necessary
— Get training data, learn model, make predictions for test data
— 1 hour end-to-end

e 25 datasets from wide range of application areas
— Already featurized
— Inputs: features X, targets y



AutoML as Blackbox Optimization
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4 AutoML System 1: Auto-WEKA
EE [Thornton, Hutter, Hoos, Leyton-Brown, KDD 2013; Kotthoff ¢ P LR 2016]
K
Meta-level "%;
— IeaTrn.mg.& —> | \WEKA %,
g optimization
— 1 |

— Parameterize ML framework: WEKA [Witten et al, 1999-current]

» 27 base classifiers (with up to 10 hyperparameters each)
* 2 ensemble methods; in total: 786 hyperparameters

— Optimize CV performance by Bayesian optimization (SMAC)

* Only evaluate more folds for good configurations . Z
_ .

— 5x speedups for 10-fold CV —
1=

Available in WEKA package manager; ~400 downloads/week
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AutoML System 2: Auto-sklearn

[Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter; NIPS 2015] *f
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Optimize CV performance by SMAC . 1= Z P
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Meta-learning to warmstart Bayesian optimization
— Reasoning over different datasets
— Dramatically speeds up the search (2 days — 1 hour)

Automated posthoc ensemble construction
to combine the models Bayesian optimization evaluated
— Efficiently re-uses its data; improves robustness
12



Auto-sklearn: Ready for Prime Time
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— Final two rounds: won both tracks

https://github.com/automl/auto-sklearn

T Usedbyv 54 ® Watch~ = 213 W Star 4k YFork 764

* Trivial to use, open source (BSD):

import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X _train, y _train)

y hat = automl.predict(X_ test)

13



UNI

FREIBURG

Example Application: Robotic Object Handling

Collaboration with
Freiburg’s robotics group

Binary classification task
for object placement:
will the object fall over?

Dataset Video credit: Andreas Eitel
— Based on BigBIRD and YCB Object and Model Set

— 30000 data points

— 50 features -- manually defined [BSc thesis, Hauff 2015]

Performance
— Strong BSc student, 3 months with Caffe: 2% error rate
— Auto-sklearn: 0.6% error rate (within 30 minutes)
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AutoML System 3: Auto-Net

[Mendoza, Klein, Feurer, Springenberg & Hutte - QML 2016]
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https://github.com/automl|/Auto-PyTorch
e Joint Architecture & Hyperparameter Optimization

* Auto-Net won several datasets against human experts

— E.g., Alexis data set: gt
* 54491 data points, |
5000 features, 18 classes
— First automated deep learning
system to win a ML competition
data set against human experts
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Since Then: Many Works on Architecture Search
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 RL & Evolution for NAS by Google Brain [Quoc Le’s group, ‘16-18]

— New state-of-the-art results for
CIFAR-10, ImageNet, Penn Treebank, Cityscapes

— Large computational demands
800 GPUs for 2 weeks
 12.800 architectures evaluated

— Hyperparameter optimization only as postprocessing

* Recent work aims for efficiency
— Network morphisms [Chenetal,’16; Cai et al, "17&'18; Elsken et al, '17&18]

— Weight sharing [Pham et al,’18; Bender et al, '18; Liu et al, “19]
— Multi-fidelity optimization [Klein et al, “16; Li et al, “18; Falkner et al, ‘18]
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* Part 1: AutoML as Blackbox Optimization
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m) Part 2: Speeding up AutoML
— Fast Neural Architecture Search via Network Morphisms
— Fast Neural Architecture Search via Weight Sharing: DARTS
— Fast Hyperparameter Optimization via Multi-fidelity Methods

* Part 3: “Auto-RL” for Learning to Design RNA

17
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Fast Architecture Search via Network Morphisms
[Elsken, Metzen & Hutter, MetaLearn 2017]
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Network morphisms
[Chen et al, 2015;
Wei et al, 2016;

Cai et al, 2017]

Result: enables architecture search in 12 hours on 1 GPU

model;

perf. = 82%

models

perf. = 82%

model,,, .
perf. = 82%

gh

SGDRtrain
—p

SGDRtrain
—

SGDRtrain
—

modely
perf. =90%

models
perf. = 88%

model,,
perf. = 84%

eigh

Cosine annealing

[Loshchilov & Hutter, 2017]

¥2U3pout  a3ppdn

T

(0“5
poP

ApplyNetMorphs

modelpest
perf. = 0.90

—_—

T~

18



§ Efficient Multi-objective Architecture Search
EE [Elsken, Metzen & Hutter, ICLR 2019]

* To trade off network size vs. error,
maintain a Pareto front of the 2 objectives
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* Evolve a population of Pareto-optimal architectures over time
* LEMONADE: Lamarckian Evolution for Multi-Objective Neural Architecture DEsign

— Weight inheritance through approximate morphisms
— Still cheap: 1 week on 8 GPUs
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§ Efficient Multi-objective Architecture Search
EE [Elsken, Metzen & Hutter, ICLR 2019]

 Comparison to existing mobile-sized networks
— Using the same training pipeline
— Better than manually-constructed mobile architectures
— Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)
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Efficient Multi-objective Architecture Search
[Elsken, Metzen & Hutter, ICLR 2019]
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 Comparison to existing mobile-sized networks
— Using the same training pipeline
— Better than manually-constructed mobile architectures
— Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)
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Weight Sharing: DARTS

[Liu et al, ICLR 2019]

Relax the discrete NAS problem (a->b)
— One-shot model with continuous architecture weight a for each operator

(1, J))

— Combined operator: 07 (x) =) exp(as o(z)

oc@ Zo re® exp( G, j))

Solve a bi-level optimization problem (c)
min  L,q(w* (), a)

s.t. w*(a) =argmin, Lirain(w, )

In the end, discretize to obtain a single architecture (d)

22



Speeding up Hyperparameter Optimization
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Too slow for big data

Hyperparameter
optimization

—> Multi-fidelity methods

In a nutshell: use cheaper-to-evaluate approximations of the blackbox,
performance on which correlates with the real blackbox

23



Using Cheap Approximations of the Blackbox
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* One possible approximation: use a subset of the data
— E.g.: SVM on MNIST
— Many cheap evaluations on small subsets
— Few expensive evaluations on the full data
— Up to 1000x speedups [Klein et al, AISTATS 2017]

Log Validation error at 35 Log Validation error at *- Log Validation error at 4=

log(C)
loglC)
log(C)

Codt) log(y)
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Using Cheap Approximations of the Blackbox
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* One possible approximation: use less epochs of SGD
— [Swersky et al, arXiv 2014; Domhan et al, 1JCAI 2015]
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Using Cheap Approximations of the Blackbox

* Cheap approximations exist in many applications
— Subset of data
— Fewer epochs of iterative training algorithms (e.g., SGD)
— Downsampled images in object recognition
— Shorter MCMC chains in Bayesian deep learning
— Fewer trials in deep reinforcement learning

— Also applicable in different domains, e.g., fluid simulations:

* Less particles
e Shorter simulations

26



How to Exploit Cheap Approximations
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¢ Bayesian optimization [Klein et al, 2017; Kandasamy et al, 2017]

— Fit a predictive model f(A,b) to predict performance as a
function of hyperparameters A and budget b

— Extrapolate performance from small to large budgets

 Simpler approach:
— Successive Halving [Jamieson & Talwalkar, AISTATS 2015]
— Hyperband [Li et al, ICLR 2017]

Log Validation error at s,,..

Log Validation error at 33

Log Validation error at -

Log Validation error at =4

log(C)
log(@)

— |og(y) L g(y.), T
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BOHB: Bayesian Optimization & Hyperband

[Falkner, Klein & Hutter, ICML 2018]
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* Bayesian optimization
— for choosing the configuration to evaluate

 Hyperband

— for deciding how to allocate budgets

 Advantages
— All the advantages of Hyperband

e Strong anytime performance

* General-purpose
— Low-dimensional continuous spaces
— High-dimensional spaces with conditionality, categorical dimensions, etc

e Easy to implement
* Scalable
* Easily parallelizable

— But also strong final performance (due to Bayesian optimization)
28



§ Hyperband vs. Random Search
2y
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Biggest advantage: much improved anytime performance

Auto-Net on dataset adult
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§ Bayesian Optimization vs. Random Search
25
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Biggest advantage: much improved final performance
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Combining Bayesian Optimization & Hyperband

FREIBURG

2
=)
107!
20x speedup - RS
+—
= 1n=2
ol
5
50x speedup
1079 . | L L

10" 10! 10? 10° 10* 10° 10°

wall clock time [

Best of both worlds: strong anytime and final performance

Auto-Net on dataset adult
31



Almost Linear Speedups By Parallelization
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Application to Bayesian Deep Learning
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e Stochastic Gradient Hamiltonian Monte Carlo
* Budget: MCMC steps

10 Boston Housing

—4— TPE
—&— BO-HB

negative log-likelihood
=N

£0! 10° 100
MCMC steps
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Application to Deep Reinforcement Learning

* Proximal policy optimization on cartpole benchmark
e Budget: trials (to find a robust policy)

cartpole

—&— RS
—4&— HB

—— TPE
—8— BO-HB
10 10° 10* 10°
time [s]

episodes until convergence
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Application to Second AutoML Challenge
[Feurer, Eggensperger, Falkner, Lindauer, Hutter; AutoML 2018]
* Auto-sklearn 2.0
— Uses base algorithms from scikit-learn and XGBoost
— Optimized using BOHB
— Budgets: dataset size; number of training epochs
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— More efficient for large datasets than Auto-sklearn 1.0

* Use meta-learning across datasets to warmstart BOHB

— 16 complementary configurations for the first phase of
successive halving pre-selected with SMAC

* Won the second international AutoML challenge
(2017 —2018)
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* Part 1: AutoML as Blackbox Optimization
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* Part 2: Speeding up AutoML

» Part 3: “Auto-RL” for Learning to Design RNA
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4 The RNA Design Problem
EE [Stoll, Runge, Falkner & Hutter, ICLR 2019]

* Background on RNA:

— Sequence of nucleotides (C, G, A, U)
— Folds into a secondary structure, which determines its function

— RNA design: find an RNA sequence that folds to a given structure

A — U
RNA folding > \A
RNA design
* RNA folding is O(N3) for sequences of length N

 RNA design is computationally hard
— Typical approach: generate and test; local search

— Here: learning a policy network to
sequentially design the sequence

37



RNA Design as an RL Problem

. t at Sequence
* Actions:

o t nucleotide/ 444
— Place next nucleotide . e 050:0:0:0:0:0:0,
pair of nucleotides g

1 CG @G..’.@e
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e State attime t:
— Simply a local n-gram centered at stept: (- -}

* (Episodic) reward:

— Fold the designed sequence, measure agreement with target

* Policy network: maps the state to a probability
distribution over actions

38



RL and Meta-Learning for RNA Design

UNI
FREIBURG

* LEARNA

— Offline phase: -

— Online phase:
* Run PPO on the target structure

* Runon 1 core, for 10 min (Rfam) or 1 day (Eterna); enough for about
100-10.000 episodes (depending on sequence length and policy network)

* Meta-LEARNA
— Offline phase:

* Optimize the policy network 2 with PPO, to maximize reward across a
training set of RNA structures, for 1 hour on 20 parallel workers

* This budget is less than the 24-hour budget for a single Eterna structure!
— Online phase: iteratively sample from 2 on the target structure

* Meta-LEARNA-adapt
— Offline phase: same as Meta-LEARNA
— Online phase: continue running PPO on the target structure

39



AutoML for LEARNA and Meta-LEARNA (“Auto-RL")
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* We optimize the policy network’s neural architecture

@ Sampled action

Fully connected
: D Optional RNN (up to 2 layers)

‘ Optional CNN (up to 2 layers)

Optional embedding

@@—@ State representation: n-grams

* At the same time, we jointly optimize further hyperparameters:
— Length of n-grams (parameter of the decision process formulation)
— Learning rate
— Batch size
— Strength of entropy regularization

40



Details for Optimization with BOHB

* Created a new set of RNA target structures for training
— 65.000 structures for training, 100 for validation, 100 for test
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* Meta-optimizing LEARNA
— No offline learning phase, so directly optimized on the validation set
— Full function evaluations on the Rfam dataset cost 10 minutes = 600s
— Multi-fidelity budgets: 22s, 66s, 200s, 600s
— Overall optimization budget: about 1 day on 180 CPU cores

* Meta-optimizing Meta-LEARNA
— Maximum runtimes we used: 1h (on 20 workers)
— Multi-fidelity budgets: 400s, 1200s, 3600s
— Overall optimization budget: about 1 day on 1,000 CPU cores
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Results: Rfam-Taneda
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* Part 1: AutoML as Blackbox Optimization
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* Part 2: Speeding up AutoML
e Part 3: “Auto-RL” for Learning to Design RNA

m) Conclusion

44
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Conclusion

AutoML: true end-to-end learning

Meta-level 1 -
learning & | —> | -€9TNINE
~——— = rning box
N optimization

e Large speedups by going beyond blackbox optimization
— Speedups in NAS and hyperparameter optimization
— BOHB: combination of Bayesian optimization and Hyperband
— AutoML is directly applicable to RL and Meta-Learning
— Application to “Auto-RL” for learning to design RNA etc)

: Autoted
* Links to code: http://automl.org Machine

Book on AutoML: http://automl.org/book
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http://ml4aad.org/
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Thank you for your attention!
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